If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+100x+30=0
a = 6; b = 100; c = +30;
Δ = b2-4ac
Δ = 1002-4·6·30
Δ = 9280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9280}=\sqrt{64*145}=\sqrt{64}*\sqrt{145}=8\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-8\sqrt{145}}{2*6}=\frac{-100-8\sqrt{145}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+8\sqrt{145}}{2*6}=\frac{-100+8\sqrt{145}}{12} $
| .6x^2+10x+3=0 | | 2w+4=-(-7w+6) | | 13x+2=89 | | 4(x+8-12)=80 | | -7+u=-0 | | 5x–7=4x–1 | | 4x(x-2)+7x=14 | | 3x+1.5=2.5+4.7+5x-4+4x | | -2/7w=10 | | d/2=9/6 | | 39a-22a-11a-4a=32 | | 42x-3=64 | | 5a-5a+4a-2a-a=41 | | 15 | | 4x=2.5x+300 | | a/4+64=15 | | 26q+12q+4q-37q+1=16 | | S(t)=2.4(0.5)t | | 250=1.30+250x-0.80 | | 3m-3m+2m-m=14 | | -3p-11=-8p+19 | | 4x-6=64 | | 20d-17d-3d+d+2=13 | | 7x+x=5 | | 3r+2=3 | | 2j-2j+2j=16 | | 3d+d-3d-1=16 | | 11g-7g-g-3g+2g=8 | | Y=5/4(0.11)x | | x-6+(8x)+124=180 | | 5m+2m-7m+2m-1=13 | | 0=416-16t |